Thermophysics with THEMIS

- Background
- THEMIS daytime infrared images
 Comparison with visible images
- THEMIS nighttime infrared images

 Proxy for qualitative thermal inertia
- THEMIS thermal inertias
 - Comparison with TES and Mini-TES data

Background

- Surface temperature affected by: Solar radiation onto the surface Albedo – thermal energy absorbed or reflected
 - Conductivity of the surface material
 - Presence of CO₂ ice

THEMIS Daytime IR

- During the day surface temperature is primarily a function of:
 - Surface albedo
 - Topography
 - Thermal inertia
- Poor time to derive thermal inertia
- Good proxy for morphology and context for THEMIS and MOC visible images
- Absolute accuracy: ~1° K

Pasteur Crater

THEMIS Visible

MOC Visible

M0201821 MSSS/JPL/NASA

Day IR <u>8 km</u> 106353020 185 240

Kasai Valles

THEMIS Visible

V12060006

1 km

Day IR 8 km 200 250

THEMIS Nighttime IR

- Surface temperature at night dominated by:
 - Thermal inertia Physical nature of the surface, such as particle size
 - Effects of albedo and topography have largely dissipated
- Qualitative thermal inertia band 9
 - High signal to noise
 - Fairly transparent to the atmosphere
- Most images are acquired between 4.5-5 H – CO₂ frost may be present
- Absolute accuracy ~4° K

Thermal Inertia

- $I = (\rho kc)^{1/2}$
 - ρ bulk density
 - (kg m⁻³)
 - k conductivity
 - (J kg⁻¹ °K⁻¹)
 - c specific heat (J s⁻¹ °K⁻¹ m⁻¹)

- Units of J m⁻¹ °K⁻¹ s^{-1/2}
- Measure of the resistance of a material to a change in temperature

Thermal Inertia Method

- Use thermal model developed by H. H. Kieffer
 - Ls, latitude, local time from spacecraft ephemeris
 - TES-derived albedo (8ppd)
 - MOLA-derived elevations (128 elem. per degree)
 TES-derived dust opacity (2 ppd) every 30° Ls
- Radiance at 12.57 µm (Band 9) is converted to brightness temperature, correcting for drift and wobble of the spacecraft.
- Interpolate upon a 7-D look-up table

Comparison with Orbital Data - TES

- Thermal models results used for TES and THEMIS agree within 3°K
- Differences in thermal inertias are primarily due to differences in surface temperature
 - Differences are roughly the same as THEMIS uncertainty
 - This difference does not change the scientific interpretation of the geology

Fergason et al., in prep.

Fergason et al., in submission

Arabia Terra 101229007 • Blue – dust - TI: 60-85 • Green – sand - TI: 210-250 • Red – resistive outcrops - TI: 400-435 M0310925 NASA/JPL/MSSS 24 430 $J/m^{2}Ks^{1/2}$ <u>16 km</u>

Conclusions

- Day IR
 - Good morphologic context
 - Temperatures strongly controlled by albedo and local topography
- Night IR
 - Qualitative thermal inertia relative within an image
- Thermal Inertia
 - Improved spatial resolution
 - Consistent with TES and Mini-TES data